Constrained Edge-Splitting Problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Edge-Splitting Problems

Splitting off two edges su, sv in a graph G means deleting su, sv and adding a new edge uv. Let G = (V + s,E) be k-edge-connected in V (k ≥ 2) and let d(s) be even. Lovász proved that the edges incident to s can be split off in pairs in a such a way that the resulting graph on vertex set V is k-edge-connected. In this paper we investigate the existence of such complete splitting sequences when ...

متن کامل

Edge Splitting-off and Network Design Problems

Edge Splitting-off and Network Design Problems

متن کامل

Prox-Penalization and Splitting Methods for Constrained Variational Problems

This paper is concerned with the study of a class of prox-penalization methods for solving variational inequalities of the form Ax + NC(x) 3 0 where H is a real Hilbert space, A : H ⇒ H is a maximal monotone operator and NC is the outward normal cone to a closed convex set C ⊂ H. Given Ψ : H → R ∪ {+∞} which acts as a penalization function with respect to the constraint x ∈ C, and a penalizatio...

متن کامل

Approximate Edge Splitting

We show that, in any undirected graph, splitting-off can be performed while preserving all cuts of value at most 4/3 times the minimum value, and this is the best possible. This generalizes a classical splitting-off result of Lovász.

متن کامل

9937 Approximate Edge Splitting

We show that, in any undirected graph, splitting off can be performed while preserving all cuts of value at most 4/3 times the minimum value, and this is best possible. This generalizes a classical splitting-off result of Lovász. CORE, University of Louvain, Belgium. This work was partially supported by DONET (European Community contract number ERB FMRX-CT98-0202) and NSF (contract 9623859-CCR).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BRICS Report Series

سال: 1999

ISSN: 1601-5355,0909-0878

DOI: 10.7146/brics.v6i37.20106